Vitiligo and diet: A theoretical molecular approach with practical implications
MR Namazi1, G.O.H Chee Leok2
1 Shiraz University of Medical Sciences, Shiraz, Iran
2 National Skin Center, Singapore
The psychologically devastating disorder vitiligo affects 1% of the world’s population. Over the years, the neurological, biochemical, immunological and genetic aspects of the pathobiology of this enigmatic disorder have been explored. Vitiligo has a multifactorial, multistep etiology, always characterized by an increase of external or internal phenol/catechol concentrations and reactive oxygen species. It is recently suggested that reactive oxygen species can alter melanocyte-specific factors to produce neo-antigens and can also amplify antigen presentation and autoimmune destruction of melanocytes. [3] It is also proposed that phenol-containing chemicals can compete with tyrosine to produce reactive quinones. This conversion is reinforced by a disturbed redox balance seen in vitiligo (increased hydrogen peroxide). Such reactive quinones can be covalently bound to the catalytic center of tyrosinase to give a neo-antigen. Micromolar (non-cytotoxic) quantities of O -quinones may be sufficient in this haptenation to mount an immune response. O -quinones derived from estrogen can serve as surrogate substrates of tyrosinase and cause haptenation. [2Furthermore, estrogen is implicated to play an important role in the development of autoimmunity. Given the important contribution of reactive oxygen species, estrogen and phenol-containing agents to the pathophysiology of vitiligo, this article tries to draw attention to the potential link between nutrition and vitiligo.
Given the pivotal role of oxidative stress in the pathobiology of vitiligo, α-tochopherol was used in combination with psoralen with ultraviolet A (PUVA) in order to shorten the duration of the treatment. Also, α-tochopherol cream combined with weak to moderate topical corticosteroids or PUVA was proposed and used with success. [6] Some patients with active or stable vitiligo were treated with an antioxidant pool (tochopherol acetate, ubiquinone, selenomethionine, methionine) in order to increase both the enzymatic and the non-enzymatic antioxidant pattern. After 3 months of therapy, the progression of the vitiligo was stopped and, in some cases, repigmentation of the most recent lesions was observed.
Given the pivotal role of oxidative stress in the pathogenesis of vitiligo, food contaminants/additives/preservatives and cosmetic products could aggravate vitiligo because they produce oxidative stress in the skin. Increased consumption of omega-6 or a vegetable source of oils and decreased omega-3 intake may increase, in vivo , the production of free radicals and pro-inflammatory cytokines. Vegetable oil could exacerbate autoimmune disease by increasing the free radical formation through decreasing the antioxidant enzyme mRNA levels. In contrast, omega-3 lipid intake in the presence of an antioxidant supplement appears to exert protection against autoimmunity by enhancing antioxidant enzymes and transforming growth factor-β mRNA levels. Omega-3 fatty acids and eicosapentaenoic acid, in particular, are well-documented inhibitors of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α). In most human nutritional studies, the enrichment of cell membranes with omega-3 polyunsaturated fatty acids has been reported to increase the glutathione (GSH) peroxidase activity. Moreover, the organic compound indole-3-carbinol, found in omega-3 fatty acids, induces CYP1A1, which hydroxylates estrogens into 2-hydroxyestrone. It is advisable, therefore, that vitiligo patients avoid omega-6 lipids and use omega-3 lipids. Moreover, omega-3 fatty acids play a critical role in the development and function of the central nervous system and evidence from epidemiological, laboratory and clinical studies suggest that omega-3 fatty acids may favorably influence the vulnerability and outcome in depressive disorders. [This fact points further to the beneficial effect of these lipids against vitiligo, as 20% of the vitiligo patients are reported to be depressed about their illness.
Mango, cashew, pistaschio, oak, cassava, areca nut, red chillies, cherry, raspberry, cranberry, blackberry and tea contain naturally occurring plant phenol and polyphenolic compounds (tannins), which may aggravate vitiligo by the mechanism outlined above. Moreover, it is reported that phenol molecules induce the release of interleukin-1α (IL-1α) and TNF-α from keratinocytes. Increased TNF-α and IL1-α levels in the lesional skin of patients with non-segmental vitiligo has been recently reported and it is suggested that these cytokines play important roles in the pathophysiology of vitiligo. Additionally, tannins induce apoptosis in vitro , inhibit cellular enzymes, bind to cell membrane and make it fragile and chelate metal ions. All these effects can aggravate vitiligo. The high phenol and tannin content of the foods widely consumed in India could explain why the highest incidence of vitiligo is seen in this country